Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures.

نویسندگان

  • Mark A Ozog
  • Ramin Siushansian
  • Christian C G Naus
چکیده

Gap junctional communication is likely one means by which neurons can endure glutamate cytotoxicity associated with CNS insults (i.e. ischemia). To examine this neuroprotective role of gap junctions, we employed gap junctional blockers to neuronal and astrocytic co-cultures during exposure to a high concentration of extracellular glutamate. Co-cultures were treated with the blocking agents carbenoxolone (CBX; 25 microM), 18alpha-glycyrrhetinic acid (AGA; 10 microM), vehicle or the inactive blocking analogue glycyrrhizic acid (GZA; 25 microM). Twenty-four hours following the insult, cell mortality was analyzed and quantified by the release of lactate dehydrogenase (LDH) into the media, the cells' inability to exclude propidium iodide, and terminal dUTP nick end labeling (TUNEL). Measurement of LDH release revealed that the glutamate insult was detrimental to the co-cultures when gap junctions were blocked with CBX and AGA. Based on propidium iodide and TUNEL labeling, the glutamate insult caused significant cell death compared to sham vehicle and mortality was amplified in the presence of CBX and AGA. Since blockers were not themselves toxic and did not affect astrocytic uptake of glutamate, it is likely that blocked gap junctions lead to the increased glutamate cytotoxicity. These findings support the hypothesis that gap junctions play a neuroprotective role against glutamate cytotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-Dependent Neuronal Control of Gap-Junctional Communication in Astrocytes

A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular calcium waves triggered in astrocytes by ...

متن کامل

Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, ...

متن کامل

l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes

l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes w...

متن کامل

Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS), the key enzyme that governs this glutamate/glutamine...

متن کامل

Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures.

Sublethal ischemia leads to increased tolerance against subsequent prolonged cerebral ischemia in vivo. In the present study, we investigated the roles of the astrocytic glutamate (Glu) transporter GLT-1 in preconditioning (PC)-induced neuronal ischemic tolerance in cortical neuron/astrocyte co-cultures. Ischemia in vitro was simulated by subjecting cultures to both oxygen and glucose deprivati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2002